SYLLABUS
-
General Knowledge including knowledge of current events and of such matters of every day observation and experience in their scientific aspects as may be expected of an educated person who has not made a special study of any scientific subject. The paper will also include questions on Indian Polity including the political system and the Constitution of India, History of India and Geography of a nuture which the candidate should be able to answer without special study.
General English
- General English Candidates will be required to write an essay in English. Other questions will be designed to test their understanding of English and workmanlike use of words. Passages will usually be set for summary or precis.
Agriculture Syllabus
- Agriculture Paper-I
Ecology and its relevance to man, natural resources, their sustainable management and conservation. Physical and social environment as factors of crop distribution and production. Climatic elements as factors of crop growth, impact of changing environment on cropping pattern as indicators of environments. Environmental pollution and associated hazards to crops, animals, and humans.
Cropping pattern in different agro-climatic zones of the country. Impact of high-yielding and short-duration varieties on shifts in cropping pattern. Concepts of multiple cropping, multistorey, relay and inter-cropping, and their importance in relation to food production. Package of practices for production of important cereals, pulses, oil seeds, fibres, sugar, commercial and fodder crops grown during Kharif and Rabi seasons in different regions of the country.
Important features, scope and propagation of various types of forestry plantations such as extension, social forestry, agro-forestry, and natural forests.
Weeds, their characteristics, dissemination and association with various crops; their multiplication; cultural, biological and chemical control of weeds.
Soil-physical, chemical and biological properties. Processes and factors of soil formation. Modern classification of Indian soils, Mineral and organic constituents of soils and their role in maintaining soil productivity. Essential plant nutrients and other beneficial elements in soils and plants. Principles of soil fertility and its evaluation for judicious fertiliser use, integrated nutrient management. Losses of nitrogen in soil, nitrogen-use efficiency in submerged rice soils, nitrogen fixation in soils. Fixation of phosphorus and potassium in soils and the scope for their efficient use. Problem soils and their reclamation methods.
Soil conservation planning on watershed basis. Erosion and run-off management in hilly, foot hills, and valley lands; processes and factors affecting them. Dryland agriculture and its problems. Technology of stabilising agriculture production in rainfed agriculture area.
Water-use efficiency in relation to crop production, criteria for scheduling irrigations, ways and means of reducing run-off losses of irrigation water. Drip and sprinkler irrigation. Drainage of water-logged soils, quality of irrigation water, effect of industrial effluents on soil and water pollution.
Farm management, scope, important and characteristics, farm planning. Optimum resources use and budgeting. Economics of different types of farming systems. Marketing and pricing of agricultural inputs and outputs, price fluctuations and their cost; role of co-operatives in agricultural economy; types and systems of farming and factors affecting them. Agricultural extension, its importance and role, methods of evaluation of extension programmes, socio-economic survey and status of big, small, and marginal farmers and landless agricultural labourers; farm mechanization and its role in agricultural productioin and rural employment. Training programmes for extension workers; lab-to-land programmes.
Paper-II
Cell Theory, cell structure, cell organelles and their function, cell division, nucleic acids-structure and function, gene structure and function. Laws of heredity, their significance in plant breeding. Chromosome structure, chromosomal aberrations, linkage and cross-over, and their significance in recombination breeding. Polyploidy, euploid and an euploids. Mutation-micro and macro-and their role in crop improvement. Variation, components of variation. Heritability, sterility and incompatibility, classification and their application in crop improvement. Cytoplasmic inheritance, sex-linked, sex-influenced and sex-limited characters.
History of plant breeding. Modes of reproduction, selfing and crossing techniques. Origin and evolution of crop plants, centre of origin, law of homologous series, crop genetic resources-conservation and utilization. Application of principles of plant breeding to the improvement of major field crops. Pure-line selection, pedigree, mass and recurrent selections, combining ability, its significance in plant breeding. Hybrid vigour and its exploitation, backcross method of breeding, breeding for disease and pest resistance, role of interspecific and intergeneric hybridization. Role of biotechnology in plant breeding. Improved varieties, hybrids, composites of various crop plants. Seed technology, its importance. Different kinds of seeds and their seed production and processing techniques. Role of public and private sectors in seed production, processing and marketing in India.
Physiology and its significance in agriculture. Imbibition, surface tension, diffusion and osmosis. Absorption and translocation of water, transpiration and water economy. Enzymes and plant pigments; photosynthesis-modern concepts and factors affecting the process, aerobic and nonaerobic respiration; C, C and CAM mechanisms. Carbohydrate, protein and fat metabolism.
Growth and development; photoperiodism and vernalization. Auxins, hormones, and other plant regulators and their mechanism of action and importance in agriculture. Physiology of seed development and germination; dormancy.
Climatic requirements and cultivation of major fruits, plants, vegetable crops and flower plants; the package of practices and their scientific basis. Handling and marketing problems of fruit and vegetables. Principal methods of preservation of important fruits and vegetable products, processing techniques and equipment. Role of fruits and vegetables in human nutriton. Raising of ornamental plants, and design and layout of lawns and gardens.
Diseases and pests of field vegetables, orchard and plantation crops of India. Causes and classification of plant pests and diseases. Principles of control of plant pests and diseases Biological control of pests and diseases. Integrated pest and disease management. Epidemiology and forecasting.
Pesticides, their formulations and modes of action. Compatibility with rhizobial inoculants. Microbial toxins.
Storage pests and diseases of cereals and pulses, and their control.
Food production and consumption trends in India. National and international food policies. Production, procurement, distribution and processing constraints. Relation of food production to national dietary pattern, major deficiencies of calorie and protein.
Agricultural Engineering Syllabus
- Agricultural Engineering
Paper-I
Section A
1. Soil and Water Conservation : Scope of soil and water conservation. Mechanics and types of erosion, their causes. Rainfall, runoff and sedimentation relationships and their measurement. Soil erosion control measures - biological and engineering including stream bank protection-vegetative barriers, contour bunds, contour trenches, contour stone walls, contour ditches, terraces, outlets and grassed waterwyas. Gully control structures - temporary and permanent - design of permanent soil conservation structures such as chute, drop and drop inlet spillways. Design of farm ponds and percolation ponds. Principles of flood control-flood routing. Watershed Management - investigation, planning and implementation - selection of priority areas and water shed work plan, water harvesting and moisture conservation. Land development - levelling, estimation of earth volumes and costing. Wind Erosion process - design fo shelter belts and wind brakes and their management. Forest (Conservation) Act,
2. Aerial Photography and Remote Sensing : Basic characteristics of photographic images, interpretation keys, equipment for interpretation, imagery interpretation for land use, geology, soil and forestry.
Remote sensing - merits and demerits of conventional and remote sensing approaches. Types of satellite images, fundamentals of satellite image interpretation, teachniques of visual and digital interpretations for soil, water and land use management. Use of GIS in planning and development of watersheds, forests including forest cover, water resources etc.
Section B
3. Irrigation and Drainage : Sources of water for irrigation. Planning and design of minor irrigation projects. Techniques of measuring soil moisture - laboratory and in situ, Soil-water plant relationships. Water requirement of crops. Planning conjunctive use of surface and ground weater. Measurement of irrigation water, measuring devices - orifices, weirs and flumes. Methods of irrigation - surface, sprinkler and drip, fertigation. Irrigation efficiencies and their estimation. Design and construction of canals, field channels, underground pipelines, head-gates, diversion boxes and structures for road crossing. Occurrence of ground water, hydraulics of wells, types of wells (tube wells and open wells) and their construction. Well development and testing. Pumps-types, selection and installation. Rehabilitation of sick and failed wells.
Drainage causes of waterlogging and salt problem. Methods of drainage— drainage of irrigated and unirrigated lands, design of surface, sub-surface and vertical drainage systems. Improvement and utilization of poor quality water. Reclamation of saline and alkali soils. Economics of irrigation and drainage systems. Use of waste water for irrigation — standards of waste water for sustained irrigation, feasibility and economics.
4. Agricultural Structures : Site selection, design and construction of farmstead - farm house, cattle shed, dairy bam, poultry shed, hog housing, machinery and implement shed, storage structures for food grains, feed and forage. Design and consturction of fences and farm roads. Structures for plant environment - green houses, poly houses and shade houses. Common building materials used in construction - timber, brick, stone, tiles, concrete etc and their properties. Water supply, drainage and sanitation system.
Section A
1. Farm Power and Machinery : Agricultural mechanization and its scope. Sources of farm power - animate and electro-mechanical. Thermodynamics, construction and working of internal combustion engines. Fuel, ignition, lubrication, cooling and governing system of IC engines. Different types of tractors and power tillers. Power tramsmission, ground drive, power take off (p.t.o.) and control systems. Operation and maintenance of farm machinery for primary and secondary tillage. Traction theory. Sowing transplanting and interculture implements and tools. Plant protection equipment - spraying and dusting. Harvesting, threshing and combining equipment. Machinery for earth moving and land development - methods and cost estimation. Ergonomics of man-machine system. Machinery for horticulture and agro-forestry, feeds and forages. Haulage of agricultural and forest produce.
2. Agro-energy : Energy requirements of agricultural operations and agro-processing. Selection, installation, safety and maintenance of electric motors for agricultural applications. Solar (thermal and photovoltoic), wind and bio-gas energy and their utilization in agriculture. Gasification of biomass for running IC engines and for electric power generation. Energy efficient cooking stoves and alternate cooking fuels. Distribution of electricity for agricultural and agro-industrial applications.
Section B
3. Agricultural Process Engineering : Post harvest technology of crops and its scope. Engineering properties of agricultural produces and by-products. Unit operations - clearning grading, size reduction, densification, concentration, drying/dehydration, evaporation, filtration, freezing and packaging of agricultural produces and by-products. Material handling equipment - belt and screw conveyors, bucket elevators, their capacity and power requirement. Processing of milk and dairy products - homogenization, cream separation, pasteurization, sterilization, spray and roller drying, butter making, ice cream, cheese and shrikhand manufacture. Waste and by-product utilization - rice husk, rice bran, sugarcane bagasse, plant residues and coir pith.
4. Instrumentation and computer applications in Agricultural Engineering : Electronic devices and their characteristics - rectifiers, amplifiers, oscillators, multivibrators. Digital circuits — sequential and combinational system. Application of microprocessors in data acquisition and control of agricultural engineering processes- measurement systems for level, flow, strain, force, torque, power, pressure, vaccum and temperature. Computers — introduction, input/output devices, central processing unit, memory devices, operating systems, processors, keyboards and printers. Algorithms, flowchart specification, programme translation and problem analysis in Agricultural Engineering. Multimedia and Audio-Visual aids.
Animal Husbandry and Veterinary Science Syllabus
-
1. Animal Nutrition-Energy sources, energy, metabolism and requirements for maintenance and production of milk, meat, eggs and wool. Evaluation of feeds as sources of energy.
1.1. Trends in protein nutriton: sources of protein metabolism and synthesis, protein quantity and quality in relation to requirements. Energy protein ratios in ration.
1.2. Minerals in animal diet : Sources, functions, requirements and their relationship of the basic minerals nutrients including trace elements.
1.3. Vitamins, Hormones and Growth Stimulating, substances : Sources, functions, requirements and inter-relationship with minerlas.
1.4. Advances in Ruminant Nutrition-Dairy Cattle: Nutrients and their metabolism with reference to milk production and its composition. Nutrient requirements for calves, heifers, dry and milking cows and buffaloes. Limitations of various feeding systems.
1.5 Advances in Non-Rumiant Nutrition-Poultry-Nutrients and their metabolism with reference to poultry, meat and egg production, Nutrients requirements and feed formulation and broilers at different ages.
1.6 Advances in Non-Ruminant Nutrition-Swine-Nutrients and their metabolism with special reference to growth and quality of meat production, Nutrient requirement and feed formulation for baby-growing and finishing pigs.
1.7. Advances in Applied Animal Nutrition-A critical review and evalaution of feeding experiments, digestibility and balance studies. Feeding standards and measures of food energy. Nutrition requirements for growth, maintenance and production. Balanced rations.
2. Animal Physiology :
2.1 Growth and Animal Production :-Prenatal and postnatal growth, maturation, growth curves, measures of growth, factors affecting growth, conformation, body composition, meat quality.
2.2 Milk Production and Reproduction and Digestion : Current status of hormonal control of mammary development, milk secretion and milk ejection. Male and Female reproduction organ, their components and function. Digestive organs and their functions.
2.3 Environmental Physiology : Physiological relations and their regulation; mechanisms of adaption, environmental factors and regulatory mechanism involved in animal behaviour, methods of controlling climatic stress.
2.4 Semen quality : Preservation and Artificial Insemination-Components of semen, composition of spermatozoe, chemical and physical properties of ejaculated semen, factors affecting semen in vivo and in vitro. Factors affecting semen production and quality preservation, composition of diluents, sperm concentration, transport of diluted semen. Deep Freezing techniques in cows, sheep and goats, swine and poultry.
Detection of oestrus and time of insemination for better conception.
3. Livestock Production and Management :
3.1 Commercial Dairy Farming-Comparison of dairy farming in India with advanced countries. Dairying under fixed farming and as a specialised farming, economic dairy farming, Starting of a dairy farm. Capital and land requirement, organisation of the dairy farm.
Procurement of goods; opportunities in dairy farming, factors determining the efficiency of dairy animal, Herd recording, budgeting, cost of milk production; pricing policy; Personnel Management. Developing Practical and Economic ration for dairy cattle; supply of greens throughout the year, field and fodder requirements of Dairy Farm, Feeding regimes for day and young stock and bulls, heifers and breeding animals, new trends in feeding young and adult stock; Feeding records.
3.2. Commercial meat, egg and wool production: Development of practical and economic rations for sheep, goats, pigs, rabbits and poultry. Supply of greens, fodder, feeding regimens for young and mature stock. New trends in enhancing production and management. Capital and land requirements and socio-economic concept.
3.3. Feeding and management of animals under drought, flood and other natural calamities.
4. Genetics and Animal Breeding : Mitosis and Meiosis; Mendelian inheritance; deviations to Mendelian genetics; Expression of genes; Linkage and crossing over; Sex determination, sex influenced and sex limited characters; Blood groups and polymorphism; Chromosome abberations; Gene and its structure; DNA as a genetic material; Genetic code and protein synthesis; Recombinant DNA technology, Mutations, types of mutations, methods for detecting mutations and mutation rate.
4.1 Population Genetics Applied to Animal Breeding: Quantitative Vs. qualitative traits; Hardy Weinberg Law; Population Vs. individual; Gene and genotypic frequency; Forces changing gene frequency; Random drift and small populations; Theory of path coefficient; Inbreeding, methods of estimating inbreeding coefficient, systems of inbreeding; Effective population size; Breeding value, estimation of breeding value, dominance and epistatic deviation; partitioning of variation; Genotype X environment correlation and genotype X environment interaction; Role of multiple measurements; Resemblance between relatives.
4.2 Breeding Systems : Heritability, repeatability and genetic and phenotypic correlations, their methods of estimation and precision of estimates; Aids to selection and their relative merits; Individual, pedigree, family and within family selection; Progeny testing; Methods of selection; Construction of selection indices and their uses; Comparative evaluation of genetic gains through various selection methods; Indirect selection and Correlated response; Inbreeding, upgrading, cross-breeding and synthesis of brees; Crossing of inbred lines for commercial production; Selection for general and specific combining ability; Breeding for threshold character.
1. Health and Hygiene
1.1. Histology and Histological Techniques : Stains-Chemical classification of stains used in biological work-principles of staining tissues-mordants-progressive & regressive stains-differential staining of cytoplasmic and connective tissue elements-Methods of preparation and processing of tissues-celloidin embedding-Freezing microtomy-Microscopy-Bright field microscope and electron microscope. Cytology-structure of cell, organells & inclusions; cell divison-cell types-Tissues and their classification-embryonic and adult tissues-Comparative histology of organs:- vascular, Nervous, digestive, respiratory, musculo-skeletal and urogenital systems-Endocrine glands-Integuments-sense organs.
1.2. Embryology : Embryology of vertebrates with special reference to aves and domestic mammals-gametogenesis-fertilization-germ layers-foetal membranes & placentation-types of placenta in domestic mammals-Teratology-twin & twinning-organogenesis-germ layer derivatives-endodermal, mesodermal and ectodermal derivatives.
1.3 Bovine Anatomy-Regional Anatomy : Paranasal sinuses of OX-surface anatomy of salivary glands. Regional anatomy of infraorbital, maxillary, mandibuloalveolar, mental & coronal nerve block-Regional anatomy of paravertebral nerves, pudental nerve, median, ulnar & radial nerves-tibial, fibular and digital nerves-Cranial nerves-structures involved in epidural anaesthesia-superficial lymph nodes-surface anatomy of visceral organs of thoracic, abdominal and pelvic cavities-comparative features of locomotor apparatus & their application in the biomechanics of mammalian body.
1.4 Anatomy of Fowl : Musculo-skeletal system-functional anatomy in relation to respiration and flying, digestion and egg production.
1.5 Physiology of blood and its circulation, respiration; excretion, Endocrine glands in health and disease.
1.5.1 Blood constituents : Properties and functions-blood cell formation-Haemoglobin synthesis and chemistry-plasma proteins production, classification and properties; coagulation of blood; Haemorrhagic disorders-anticoagulants-blood groups-Blood volume-Plasma expanders-Buffer systems in blood. Biochemical tests and their significance in disease diagnosis.
1.5.2. Circulation: Physiology of heart, cardiac cycle-heart sounds, heart beat, electrocardiograms, Work and efficiency of heart-effect of ions on heart function-metabolism of cardiac muscle, nervous and chemical regulation of heart, effect of temperature and stress on heart, blood pressure and hypertension, Osmotic regulation, arterial pulse, vasomotor regulation of circulation, shock. Coronary & pulmonary circulation, Blood-Brain barrier-Cerebrospinal fluid-circulation in birds
.1.5.3 Respiration : Mechanism of respiration, Transport and exchange of gases-neural control of respiration-chemoreceptors-hypoxia-respiration in birds
.1.5.4 Excretion: Structure and function of kidney-formation of urinemethods of studying renal function-renal regulation of acid-base balance; physiological constituents of urine-renal failure-passive venous congestion-Urinary recreation in chicken-Sweat glands and their function. Biochemical tests for urinary dysfunction.
1.5.5 Endocrine glands : Functional disorders, their symptoms and diagnosis. Synthesis of hormones, mechanism and control of secretion-hormonal receptors-classification and function
.1.6. General knowlege of pharmacology and therapeutics of drugs : Celluar level of pharmacodynamics and pharmaco-kinetics-Drugs acting on fluids and electrolyte balance-drugs acting on Autonomic nervous system-Modern concepts of anaesthesia and dissociative anaesthetics-Autocoids-Antimicrobials and principles of chemotherapy in microbial injections-use of hormones in therapeutics-chemotherapy of parasitic infections-Drug and economic persons in the Edible tissues of animals-chemotherapy of Neoplastic diseases.
1.7. Veterinary Hygiene with reference to water, air and habitation : Assessment of pollution of water, air and soil-Importance of climate in animal health-effect of environment on animal function and performance-relationship between industri-alisation and animal agriculture-animal housing requirements for specific categories of domestic animals viz. pregnant cows & sows, milking cows, broiler birds-stress, strain & productivity in relation to animal habitation.
2. Animal Diseases :
2.1 Pathogenesis, symptoms, postmortum lesions, diagnosis, and control of infection diseases of cattle, pigs and poultry, horses, sheep and goats.
2.2 Etiology, symptoms, diagnosis, treatment of production diseases of cattle, pig and poultry.
2.3 Deficiency diseases of domestic animals and birds.
2.4 Diagnosis and treatment of nonspecific condition like impaction, Bloat, Diarrhoea, Indigestion, dehydration, stroke, poisioning.
2.5 Diagnosis and treatment of neurological disorders.
2.6 Principles and methods of immunisation of animals against specific disseases-hard immunity-disease free zones-'zero' disease concept-chemoprophylaxis.
2.7 Anaesthesia-local, regional and general-preanaesthetic medication, Symptoms and surgical interference in fractures and dislocation, Hernia, choking, abomassal displacement-Caesarian operations, Rumenotomy-Castrations.
2.8 Disease investigation techniques-Materials for laboratory investigation-Establishment Animal Health Centres-Disease free zone.
3. Veterinary Public Health
3.1 Zoonoses : Classification, definition; role of animals and birds in prevalence and transmission of zoonotic diseases-occupational zoonotic diseases.
3.2. Epidemiology : Principles, definition of epidemiological terms, application of epidemiological measures in the study of diseases and disease control, Epidemiological features of air, water and food borne infections.
3.3 Veterinary Jurisprudence : Rules and Regulations for improvement of animal quality and prevention of animal diseases-state and control Rules for prevention of animal and animal product borne diseases-S.P. C.A.-veterolegal cases-certificates-Materials and Methods of collection of samples for veterolegal investigation.
4. Milk and Milk Products Technology :
4.1 Milk Technology : Organization of rural milk procurement, collection and transport of raw milk. Quality, testing and grading raw milk, Quality storage grades of whole milk, Skimmed milk and cream.
Processing, packaging, storing, distributing, marketing defects and their control and nutritive properties of the following milks : Pasteurized, standardized, toned, double toned, sterilized, homogenized, reconstituted, recombined and flavoured milks. Preparation of cultured milks, cultures and their management, youghurt, Dahi, Lassi and Srikhand. Preparation of flavoured and sterlized milks. Legal standards, Sanitation requirement for clean and safe milk and for the milk plant equipment.
4.2 Milk Products Technology : Selection of raw materials, assembling, production, processing, storing, distributing and marketing milk products such as Butter, Ghee, Khoa, Channa, Cheese; Condensed, evaporated, dried milk and baby food; Ice cream and Kulfi; by products; whey products, butter milk, lactose and casein. Testing Grading, judging milk products-BIS and Agmark specifications, legal standards, quality control nutritive properties. Packaging, processing and operational control Costs.
5. Meat Hygiene and Technology : 5.1 Meat Hygiene :
5.1.1 Ante mortem care and management of food animals, stunning, slaughter and dressing operations; abattoir requirements and designs; Meat inspection procedures and judgement of carcass meat cuts-drading of carcass meat cuts-duties and functions of Veterinarians in Wholesome meat production.
5.1.2 Hygienic methods of handling production of meat-spoilage of meat and control measures-Post slaughter physicochemical changes in meat and factors that influence them-quality improvement methods-Adulteration of meat and defection-Regulatory provisions in Meat trade and Industry.
5.2. Meat Technology
5.2.1 Physical and chemical characteristics of meat-meat emulsions-methods of preservation of meat-curing, canning, irradiation, packaging of meat and meat products; meat products and formulations.
5.3. Byproducts : Slaughter house by products and their utilisation-Edible and inedible byproducts-social and economic implications of proper utilisation of slaughter house byproducts-Organ products for food and pharmaceuticals.
5.4. Poultry Products Technology : Chemical composition and nutritive value of poultry meat, pre slaughter care and management. Slaughtering techniques, inspection, preservation of poultry meat, and products. Legal and BIS standards.
Structure, composition and nutritive value of eggs. Microbial spoilage. Preservation and mainteancne. Marketing of poultry meat, eggs and products.
5.5. Rabbit/Fur Animal farming : Care and management of rabbit meat production. Disposal and utilization of fur and wool and recycling of waste byproducts. Grading of wool.
6. Extension : Basic philosophy, objectives, concept and principles of extension. Different Methods adopted to educate farmers under rural conditions. Generation of technology, its transfer and feedback. Problems of constraints in transfer of technology. Animal husbandry programmes for rural development.
Botany Syllabus
-
PAPER-I
1. Microbiology and Plant Pathology: Viruses, bacteria, and plasmids-structure and reproduction. General account of infection, Phytoimmunology. Applications of microbiology in agriculture, industry, medicine and pollution control in air, soil and water.
Important plant diseases caused by viruses, bacteria, mycoplasma, fungi and nematodes. Mode of infection and dissemination. Molecular basis of infection and disease resistance/defence. Physiology of parasitism and control measures. Fungal toxins.
2. Cryptogams: Algae, Fungi, Bryophytes, Pteridophytes-structure and reproduction from evolutonary viewpoint. Distribution of Cryptogams in India and their economic potential.
3. Phanerogams: Gymnosperms: Concept of Progymonosperms. Classification and distribution of Gymnosperms. Salient features of Cycadales, Coniferrals and Gnetales, their structures and reproduction. General account of Cycadofilicales, Bennettitales and Cordaitales.
Angiosperms: Systematics, anatomy, embryology, palynology and phylogeny. Comparative account of various systems of Angiosperm Classiification. Study of angiospermic families–Magnoliaceae, Ranunculaceae, Brassicaceae (Cruci-ferae), Rosaceae, Leguminosae, Euphorbiaceae, Malvaceaie, Dipterocar-paceae, Apiaceae (Umbelliferae), Asclepiadaceae, Verbenaceae, Solana-ceae, Rubiaceae, Cucurbitaceae, Asteraceae (Composite), Poaceae (Gramineae), Arecaceae (Palmae), Liliaceae, Musaceae, Orchidaceae. Stomata and their types. Anomalous secondary growth, Anatomy of C 3 and C 4 plants. Development of male and female gametophytes, pollination, fertilization. Endosperm–its development and function. Patterns of embryo development. Polyembryony, apoxmix, Applications of palynology.
4. Plant Utility and Exploitation:
Origin of cultivated plants, Vavilov's centres of origin. Plants as sources for food, fodder, fibres, spices, beverages, drugs, narcotics, insecticides, timber, gums, resins and dyes. Latex, cellulose Starch and their products. Perfumery. Importance of Ethnobotany in Indian context. Energy plantation. Botanical Gardens and Herbaria.
5. Morphogenesis: Totipotency, polarity, symmetry and differentiation. Cell, tissue, organ and protoplast culture. Somatic hybrids and Cybrids.
PAPER-II
1. Cell Biology: Techniques of Cell Biology. Prokaryotic and eukaryotic cells -structural and ultrastructural details. Structure and function of extracellular matrix or ECM (cell wall) and membranes-cell adhesion, membrane transport and vesicular transport. Structure and function of cell organelles (chloroplasts, mitochondria, ER, ribosomes, endosomes, lysosomes, peroxisomes, hydrogenosome). Nucleus, nucleolus, nuclear pore complex. Chromatin and nucleosome. Cell signalling and cell receptors. Signal transduction (G-1 proteins, etc.). Mitosis and meisdosis; molecular basis of cell cycle. Numerical and structural variations in chromosomes and their significance. Study of polytene, lampbrush and B-chromosomes–structure, behaviour and significance.
2. Genetics, Molecular Biology and Evolution: Development of genetics, and gene versus allele concepts (Pseudoalleles). Quantitative genetics and multiple factors. Linkage and crossing over–methods of gene mapping including molecular maps (idea of mapping function). Sex chromosomes and sexlinked inheritance, sex determination and molecular basis of sex differentiation. Mutation (biochemical and molecular basis). Cytoplasmic inheritance and cytoplasmic genes (including genetics of male sterility). Prions and prion hypothesis.
Structure and synthesis of nucleic acids and protines. Genetic code and regulation of gene expression. Multigene families.
Organic evolution-evidences, mechanism and theories. Role of RNA in origin and evolution.
3. Plant Breeding, Biotechnology and Biostatistics: Methods of plant breeding -- introduction, selection and hybridization (pedigree, backcross, mass selection, bulk method). Male sterility and heterosis breeding. Use of apomixis in plant breeding. Micropropagation and genetic engineering–methods of transfer of genes and transgenic crops; development and use of molecular markers in plant breeding.
Standard deviation and coefficient of variation (CV). Tests of significance (Z-test, t-test and chi-square tests). Probability and distributions (normal, binomial and Poisson distributions). Correlation and regression.
4. Physiology and Biochemistry: Water relations, Mineral nutrition and ion transport, mineral deficiencies. Photosynthesis–photochemical reactions, photophosphorylation and carbon pathways including C pathway (photorespiration), C, C and CAM pathways. Respiraion (anaerobic and aerobic, including fermentation-electron transport chain and oxidative phosphorylation. Chemiosmotic theory and ATP synthesis. Nitrogen fixation and nitrogen metabolism. Enzymes, coenzymes, energy transfer and energy conservation. Importance of secondary metabolites. Pigments as photoreceptors (plastidial pigments and phytochrome). Photoperiodism and flowering, vernalization, senescence. Growth substances-their chemical nature, role and applications in agri-horticulture, growth indices, growth movements. Stress physiology (heat, water, salinity, metal). Fruit and seed physiology. Dormancy, storage and germination of seed. Fruit ripening -- its molecular basis and manipulation.
5. Ecology and Plant Geography: Ecological factors. Concepts and dynamics of community. Plant succession. Concepts of biosphere. Ecosystems and their conservation. Pollution and its control (including phytoremediation).
Forest types of India -- afforestation, deforestation and social forestry. Endangered plants, endemism and Red Data Books. Biodiversity. Convention of Biological Diversity, Sovereign Rights and Intellectual Property Rights. Biogeochemical cyeles. Global warming.
pressure. Design of closures flat and eliptical head. Design of supports. Materials of construction-characteristics and selection.
(f) Process Dynamics and Control
Measuring instruments for process variables like level, pressure, flow, temperature pH and concentration with indication in visual/pneumatic/analog/digital signal forms. Control variable, manipulative variable and load variables. Linear control theory-Laplace, transforms. PID controllers. Block diagram represenation transient and frequency response, stability of closed loop system. Advanced control strategies. Computer based process control.
Section A
(a) Material and Energy Balances
Material and energy balance calculations in processes with recycle/bypass/purge. Combustion of solid/liquid/gaseous fuels, stoichiometric relationships and excess air requirements. Adiabatic flame temperature.
(b) Chemical Engineering Thermodynamics
Laws of thermodynamics. PVT relationships for pure components and mixtures. Energy functions and inter-relationships - Maxwell’s relations. Fugacity, activity and chemical potential. Vapour-liquid equilibria, for ideal/non-ideal, single and multi component systems. eriteria for chemical reaction equilibrium, equilibrium constant and equillibrium conversions. Thermodynamic cycles - refrigeration and power.
(c) Chemical Reaction Engineering :
Batch reactors - kinetics of homogeneous reactions and interpretation of kinetic data. Ideal flow reactors - CSTR, plug flow reactors and their perofrmance equations. Temperature effects and run-away reactions. Heterogeneous reactions - catalytic and non-catalytic and gas-solid and gas-liquid reactions. Intrinsic kinetics and global rate concept. Importance of interphase and intraparticle mass transfer on performance. Effectiveness factor. Isothermal and non-isothermal reactors and reactor stability.
Section B
(d) Chemical Technology
Natural organic products - Wood and wood-based chemicals, pulp and paper, Agro industries - sugar, Edible oils extraction (including tree based seeds), Soaps and detergents. Essential oils - Biomass gasification (including biogas). Coal and coal chemical. Petroleium and Natural gas-Petroleum refining (Atomospheric distillation/cracking/reforming) - Petrochemical industries - Polyethylenes (LDPE/HDPE/LLDPE), Polyvinyl Chloride, Polystyrene. Ammonia manufacture. Cement and lime industries. Paints and varnishes. Glass and ceremics. Fermentation - alcohol and antibiotics.
(e) Environmental Engineering and Safety
Ecology and Environment. Sources of pollutants in air and water. Green house effect, ozone layer depletion, acid rain. Micrometeorology and dispersion of pollutants in environment. Measurement techniques of pollutant levels and their control strategies. Solid wastes, their hazards and their disposal techniques. Design and performance analysis of pollution control equipment. Fire and explosion hazards rating - HAZOP and HAZAN. Emergency planning, disaster management. Environmental legislations - water, air environment protection Acts. Forest (Conservation) Act.
(f) Process Engineering Economics :
Fixed and working capital requirement for a process industry and estimation methods. Cost estimation and comparison of alternatives. Net present value by discounted cash flow. Pay back analysis. IRR, Depreciation, taxes and insurance. Break-even point analysis. Project scheduling - PERT and CPM. Profit and loss account, balance sheet and financial statement. Plant location and plant layout including piping.
Chemistry Syllabus
- Chemistry Syllabus
PAPER-I
1. Atomic structure
Quantum theory, Heisenberg's uncertainity principle, Schrodinger wave equation (time independent). Interpretation of wave function, particle in one-dimensional box, quantum numbers, hydrogen atom wave functions. Shapes of s, p and d orbitals.
2. Chemical bonding
Ionic bond, characteristics of ionic compounds, factors affecting stability of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments. Valence bond theory, concept of resonance and resonance energy. Molecular orbital theory (LCAO method); bonding in homonuclear molecules: H+2, H2 to Ne2, NO, CO, HF, CN, CN-, BeH2 and CO2. Comparision of valence bond and molecular oribtal theories, bond order, bond strength and bond length.
3. SOLID STATE
Forms of solids, law of constancy of interfacial angles, crystal systems and crystal classes (crystallographic groups). Designation of crystal faces, lattice structures and unit cell. Laws of rational indices. Bragg's law. X-ray diffraction by crystals. Close packing, radious ratio rules, calculation of some limiting radius ratio values. Structures of NaCl, ZnS, CsCl, CaF2, CdI2 and rutile. Imperfections in crystals, stoichiometric and nonstoichiometric defects, impurity defects, semi-conductors. Elementary study of liquid crystals.
4. The gaseous state
Equation of state for real gases, intermolecular interactions, liquifictaion of gases and critical phenomena, Maxwell's distribution of speeds, intermolecular collisions, collisions on the wall and effusion.
5. Thermodynamics and statistical thermodynamics
Thermodynamic systems, states and processes, work, heat and internal energy; first law of thermodynamics, work done on the systems and heat absorbed in different types of processes; calorimetry, energy and enthalpy changes in various processes and their temperature dependence.
Second law of thermodynamics; entropy as a state function, entropy changes in various process, entropy–reversibility and irreversibility, Free energy functions; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem and third law of thermodynamics.
Micro and macro states; canonical ensemble and canonical partition function; electronic, rotational and vibrational partition functions and thermodynamic quantities; chemical equilibrium in ideal gas reactions.
6. Phase equilibria and solutions
Phase equilibria in pure substances; Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids–upper and lower critical solution temperatures; partial molar quantities, their significance and determination; excess thermodynamic functions and their determination.
7. Electrochemistry
Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties.
Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries.
Processes at electrodes; double layer at the interface; rate of charge transfer, current density; overpotential; electroanalytical techniques–voltametry, polarography, amperometry, cyclic-voltametry, ion selective electrodes and their use.
8. Chemical kinetics
Concentration dependence of rate of reaction; defferential and integral rate equations for zeroth, first, second and fractional order reactions. Rate equations involving reverse, parallel, consecutive and chain reactions; effect of temperature and pressure on rate constant. Study of fast reactions by stop-flow and relaxation methods. Collisions and transition state theories.
9. Photochemistry
Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields.
10. Surface phenomena and catalysis
Adsorption from gages and solutions on solid adsorbents, adsorption isotherms–Langmuir and B.E.T. isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts.
11. Bio-inorganic chemistry
Metal ions in biological systems and their role in ion-transport across the membranes (molecular mechanism), ionophores, photosynthesis–PSI, PSII; nitrogen fixation, oxygen-uptake proteins, cytochromes and ferredoxins.
12. Coordination chemistry
(a) Electronic configurations; introduction to theories of bonding in transition metal complexes. Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and electronic spactra of metal complexes.
(b) Isomerism in coordination compounds. IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planer complexes; thermodynamic and kinetic stability of complexes.
(c) Synthesis and structures of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds.
(d) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization. Compounds with metal-metal bonds and metal atom clusters.
13. General chemistry of ‘f’ block elements
Lanthanides and actinides; separation, oxidation states, magnetic and spectral properties; lanthanide contraction.
14. Non-Aqueous Solvents
Reactions in liquid NH3, HF, SO2 and H2 SO4. Failure of solvent system concept, coordination model of non-aqueous solvents. Some highly acidic media, fluorosulphuric acid and super acids.
Paper II
1. Delocalised covalent bonding : Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, kekulene, fulvenes, sydnones.
2(a) Reaction mechanisms : General methods (both kinetic and non-kinetic) of study of mechanism or organic reactions illustrated by examples–use of isotopes, cross-over experiment, intermediate trapping, stereochemistry; energy diagrams of simple organic reactions–transition states and intermediates; energy of activation; thermodynamic control and kinetic control of reactions.
(b) Reactive intermediates : Generation, geometry, stability and reactions of carbonium and carbanium ions, carbanions, free radicals, carbenes, benzynes and niternes.
(c) Substitution reactions : SN1, SN2, SNi, SN1’, SN2’, SNi’ and SRN1 mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compound including simple heterocyclic compounds–pyrrole, thiophene, indole.
(d) Elimination reactions : E1, E2 and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann; pyrolytic syn elimination–acetate pyrolysis, Chugaev and Cope eliminations.
(e) Addition reactions : Electrophilic addition to C=C and C=C; nucleophilic addition to C=O, C=N, conjugated olefins and carbonyls.
(f) Rearrangements : Pinacol-pinacolune, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements.
3. Pericyclic reactions : Classification and examples; Woodward-Hoffmann rules—clectrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.
4. Chemistry and mechanism of reactions : Aldol condensation (including directed aldol condensation), Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.
5. Polymeric Systems
(a) Physical chemistry of polymers : Polymer solutions and their thermodynamic properties; number and weight average molecular weights of polymers. Determination of molecular weights by sedimentation, light scattering, osmotic pressure, viscosity, end group analysis methods.
(b) Preparation and properties of polymers : Organic polymers–polyethylene, polystyrene, polyvinyl chloride, Teflon, nylon, terylene, synthetic and natural rubber. Inorganic polymers–phosphonitrilic halides, borazines, silicones and silicates.
(c) Biopolymers : Basic bonding in proteins, DNA and RNA.
6. Synthetic uses of reagents : OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4 n-BuLi, MCPBA.
7. Photochemistry : Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions.
8. Principles of spectroscopy and applications in structure elucidation
(a) Rotational spectra–diatomic molecules; isotopic substitution and rotational constants.
(b) Vibrational spectra–diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules.
(c) Electronic spectra : Singlet and triplet states. N–>* and –>* transitions; application to conjugated double bonds and conjugated carbonyls–Woodward-Fieser rules.
(d) Nuclear magnetic resonance : Isochronous and anisochronous protons; chemical shift and coupling constants; Application of 1H NMR to simple organic molecules.
(e) Mass spectra : Parent peak, base peak, daugther peak, metastable peak, fragmentation of simple organic molecules;– cleavage, McLafferty rearrangement.
(f) Electron spin resonance : Inorganic complexes and free radicals.
Forestry Syllabus
- FORESTRY PAPER-I
Section A
1. Silviculture - General :
General Silvicultural Principles : ecological and physiological factors influencing vegetation, natural and artificial regeneration of forests; methods of propagation, grafting techniques; site factors; nursery and planting techniques-nursery beds, polybags and maintenance, water budgeting, grading and hardening of seedlings; special approaches; establishment and tending.
2. Silviculture - systems :
Clear felling, uniform shelter wood selection, coppice and conversion systems. Management of silviculture systems of temperate, subtropical, humid tropical, dry tropical and coastal tropical forests with special reference to plantation silviculture, choice of species, establishment and management of standards, enrichment methods, technical constraints, intensive mechanized methods, aerial seeding thinning.
3. Silviculture - Mangrove and Cold desert :
Mangrove : habitat and characteristics, mangrove, plantation-establishment and rehabilitation of degraded mangrove formations; silvicultural systems for mangrove; protection of habitats against natural disasters. Cold desert - Characteristics, identification and management of species.
4. Silviculture of trees :
Traditional and recent advances in tropical silvicultural research and practices. Silviculture of some of the economically important species in India such as Acacia catechu, Acacia nilotica, Acacia auriculiformis, Albizzia lebbeck, Albizzia procera, Anthocephalus Cadamba, Anogeissus latifolia, Azadirachta indica, Bamboo spp, Butea monosperma, Cassia siamea, Casuarina equisetifolia, Cedrus deodara, Chukrasia tabularis, Dalbergia sisoo, Dipterocarpus spp., Emblica officindils, Eucalyptus spp, Gmelina Arborea, Hardwickia binata, Largerstroemia Lanceolata, Pinus roxburghi, Populus spp, Pterocarpus marsupium, Prosopis juliflora, Santalum album, Semecarpus anacardium,. Shorea robusta, Salmalia malabaricum, Tectona grandis, Terminalis tomemtosa, Tamarindus indica.
Section B
1. Agroforestry, Social Forestry, Joint Forest Management and Tribology :
Agroforestry - scope and necessity; role in the life of people and domestic animals and in integrated land use, planning especially related to (i) soil and water conservation; (ii) water recharge; (iii) nutrient availability to crops; (iv) nature and eco-system preservation including ecological blances through pest-predator relationships and (v) providing opportunities for enhancing bio-diversity, medicinal and other flora and fauna. Agro forestry systems under different agro-ecological zones; selection of species and role of multipurpose trees and NTFPs, techniques, food, fodder and fuel security. Research and Extension needs. Social/Urban Forestry : objectives, scope and necessity; peoples participation. JFM - principles, objectives, methodology, scope, benefits and role of NGOs. Tribology - tribal scene in India; tribes, concept of races, principles of social grouping, stages of tribal economy, education, cultural tradition, customs, ethos and participation in forestry programmes.
2. Forest Soils, Soil Conservation and Watershed management :
Forests Soils, classification, factors affecting soil formation; physical, chemical and biological properties.
Soil conservation - definition, causes for erosion; types - wind and water erosion; conservation and management of eroded soils/areas, wind breaks, shelter belts; sand dunes; reclamation of saline and alkaline soils, water logged and other waste lands. Role of forests in conserving soils. Maintenance and build up of soil organic matter, provision of loppings for green leaf manuring; forest leaf litter and composting; Role of microorganisms in ameliorating soils; N and C cycles, VAM.
Watershed Management - concepts of watershed; role of mini-forests and forest trees in overall resource management, forest hydrology, watershed development in respect of torrent control, river channel stabilization, avalanche and landslide controls, rehabilitation of degraded areas; hilly and mountain areas; watershed management and environmental functions of forests; water-harvesting and conservation; ground water recharge and watershed management; role of integrating forest trees, horticultural crops, field crops, grass and fodders.
3. Environmental Conservation and Biodiversity :
Environment; components and importance, principles of conservation, impact of deforestation; forest fires and various human activities like mining, construction and developmental projects, population growth on environment.
Pollution - types, global warming, green house effects, ozone layer depletion, acid rain, impact and control measures, environmental monitoring; concept of sustainable development. Role of trees and forests in environmental conservation; control and prevention of air, water and noise pollution. Environmental policy and legislation in India. Environmental Impact Assessment. Economics assessment of watershed development vis-a-vis ecological and environmental protection.
4. Tree Improvement and Seed Technology :
General concept of tree improvement, methods and techniques, variation and its use, provenance, seed source, exotics; quantitative aspects of forest tree improvement, seed production and seed orchards, progeny tests, use of tree improvement in natural forest and stand improvement, genetic testing programming, selection and breeding for resistance to diseases, insects, and adverse environment; the genetic base, forest genetic resources and gene conservation in situ and ex-situ. Cost benefit ratio, economic evaluation.
PAPER II
Section A
1. Forest Management and Management Systems :
Objective and principles; techniques; stand structure and dynamics, sustained yield relation; rotation, normal forest, growing stock; regulation of yield; management of forest plantations, commercial forests, forest cover monitoring. Approaches viz., (i) site-specific planning, (ii) strategic planning, (iii) Approval, sanction and expenditure, (iv) Monitoring (v) Reporting and governance. Details of steps involved such as formation of Village Forest Committees, Joint Forest Participatory Management.
2. Forest Working Plan :
Forest planning, evaluation and monitoring tools and approaches for integrated planning; multipurpose development of forest resources and forest industries development; working plans and working schemes, their role in nature conservation, bio-diversity and other dimensions; preparation and control. Divisional Working Plans, Annual Plan of Operations.
3. Forest Mensuration and Remote Sensing :
Methods of measuring - diameter, girth, height and volume of trees; form-factor; volume estimation of stand, current anuual increment; mean annual increment. Sampling methods and sample plots. Yield calculation; yield and stand tables, forest cover monitoring through remote sensing; Geographic Information Systems for management and modelling.
4. Surveying and Forest Engineering :
Forest surveying - different methods of surveying, maps and map reading. Basic principles of forest engineering. Building materials and construction. Roads and Bridges; General principles, objects, types, simple design and construction of timber bridges.
Section B
1. Forest Ecology and Ethnobotany :
Forest ecology - Biotic and aboitic components, forest eco-systems; forest community concepts; vegetation concepts, ecological succession and climax, primary productivity, nutrient cycling and water relations; physiology in stress environments (drought, water logging salinity and alkalinity). Forest types in India, identification of species, composition and associations; dendrology, taxonomic classification, principles and establishment of herbaria and arboreta. Conservation of forest ecosystems. Clonal parks,
Role of Ethnobotany in Indian Systems of Medicine; Ayurveda and Unani - Introduction, nomenclature, habitat, distribution and botanical features of medicinal and aromatic plants. Factors affecting action and toxicity of drug plants and their chemical constituents.
2. Forest Resources and Utilization :
Environmenatlly sound forest harvesting practices; logging and extraction techniques and principles, transportation system, storage and sale; Non-Timber Forest Products (NTFPs) definition and scope; gums, resins, oleoresins, fibres, oil seeds nuts, rubber, canes, bamboos, medicinal plants, charcoal, lac and shellac, Katha and Bidi leaves, collection; processing and disposal.
Need and importance of wood seasoning and preservation; general principles of seasoning, air and kiln seasoning, solar dehumidification, steam heated and electrical kilns. Composite wood; adhesives-manufacture, properties, uses, plywood manufacture-properties, uses, fibre boards-manufacture properties, uses; particle boards manufacture; properties uses. Present status of composite wood industry in India in future expansion plans. Pulp-paper and rayon; present position of supply of raw material to industry, wood substitution, utilization of plantation wood; problems and possibilities.
Anatomical structure of wood, defects and abnormalities of wood, timber identification - general principles.
3. Forest Protection & Wildlife Biology :
Injuries to forest - abiotic and biotic, destructive agencies, insect-pests and disease, effects of air pollution on forests and forest die back. Susceptibility of forests to damage, nature of damage, cause, prevention, protective measures and benefits due to chemical and biological control. General forest protection against fire, equipment and methods, controlled use of fire, economic and environmental costs; timber salvage operations after natural disasters. Role of afforestation and forest regeneration in absorption of CO2. Rotational and controlled grazing, different methods of control against grazing and browsing animals; effect of wild animals on forest regeneration, human impacts; encroachement, poaching, grazing, live fencing, theft, shifting cultiation and control.
4. Forest Economics and Legislation :
Forest economics–fundamental principles, cost-benefit analyses; estimation of demand and supply; analysis of trends in the national and international market and changes in production and consumption patterns; assessment and projection of market structures; role of private sector and co-operatives; role of corporate financing. Socio-economic analyses of forest productivity and attitudes; valuation of forest goods and service.
Legislation–History of forest development; Indian Forest Policy of 1894, 1952 and 1990. National Forest Policy, 1988 of People’s involvement, Joint Forest Management, Involvement of women; Forestry Policies and issues related to land use, timber and non-timber products, sustainable forest management; industrialisation policies; institutional and structural changes. Decentralization and Forestry Public Administration. Forest laws, necessity; general principles, Indian Forest Act 1927; Forest Conservation Act, 1980; Wildlife Protection Act 1972 and their amendments; Application of Indian Penal Code to Forestry. Scope and objectives of Forest Inventory.
Geology Syllabus
-
Section-A
(i) General Geology
The Solar System, meteorities, origin and interior of the earth. Radioactivity and age of earth; Volcanoes- causes and products, volcanic belts. Earthquakes-causes, effects, earthquake belts, seismicity of India, intensity and magnitude, seismongraphs. Island arcs, deep sea trenches and mid-ocean ridges. Continental drift-evidences and mechanics; seafloor spreading, plate tectonics. Isostasy, orogeny and epeirogeny. Continents and oceans.
(ii) Geomorphology and Remote Sensing
Basic concepts of geomorphology. Weathering and mass wasting. Landforms, slopes and drainage. Geomorphic cycles and their interpretation. Morphology and its relation to structures and lithology. Applications of geomorphology in mineral prospecting, civil engineering,. hydrology and environmental studies. Geomorphology of Indian subcontinent.
Aerial photographs and their interpretation-mertis and limitations. The Electronmagnetic Spectrum. Orbiting satellites and sensor systems. Indian Remote Sensing Sataellites. Satellites data products. Applications of remote sensing in geology. The Geographic Information System and its applications. Global Positioning System.
(iii) Structural geology
Priniples of geologic mapping and map reading, projection diagrams, stress and strain ellipsoid and stress-strain relationships of elastic, plastic and viscous materials. Strain markers in deformed rocks. Behaviour of minerals and rocks under deformation conditions. Folds and faults classification and mechanics. Structural analysis of folds, foliations, lineations, joints and faults, unconformities. Superposed deformation. Time-relationship between crystallization and deformation. Introduction to petrofabrics.
Section-B
(iv) Paleontology
Species- definition and nomenclature. Megafossils and Microfossils. Modes of preservation of fossils. Different kinds of microfossils. Application of microfossils in correlation, petroleum exploration, paleoclimatic and paleoceanographic studies. Morphology, geological history and evolutionary trend in Cephalopoda, Trilobita, Brachiopoda, Echinoidea and Anthozoa. Stratigraphic utility of Ammonoidea, Trilobita and Graptoloidea. Evolutionary trend in Hominidae, Equidae and Proboscidae. Siwalik fauna. Gondwana flora and its importance.
(v) Stratigraphy and Geology of India
Classification of stratigraphic sequences: lithostratigraphic, biostratigraphic, chro-nostratigraphic and magnetostratigraphic and their interrelationships. Distribution and classification of Precambrian rocks of India. Study of stratigraphic distribution and lithology of Phanerozoic rocks of India with reference to fauna, flora and economic importance. Major boundary problems- Cambrian/Precambrian, Permian/Triassic, Cretaceous/Tertiary and Pliocene/Pleistocene. Study of climatic conditions, paleogeography and igneous activity in the Indian subcontinent in the geological past. Tectonic framework of India. Evolution of the Himalayas.
(vi) Hydrogeology and Engineering Geology : Hydrologic cycle and genetic classification of water. Movement of subsruface water. Springs. Porosity, permeability, hydraulic conductivity, transmissivity and storage coefficient, classification of aquifers. Water-bearing characteristics of rocks. Groundwater chemistry. Salt water intrusion. Types of wells. Drainage basin morphometry. Exploration for groundwater. Groundwater recharge. Problems and management of groundwater. Rainwater harvesting. Engineering properties of rocks. Geological investigations for dams, tunnels and bridges. Rock as construction material. Alkali-aggregate reaction. Landslides-causes, prevention and rehabilitation. Earthquake-resistant structures.
Section-A
(i) Mineralogy
Classification of crystals into systems and classes of symmetry. International system of crystallographic notation. Use of projection diagrams to represent crystal symmetry. Crystal defects. Elements of X-ray crystallography.
Petrological microscope and accessories. Optical properties of common rock forming minerals. Pleochroism, extinction angle, double refraction, birefringence, twinning and dispersion in minerals. Physical and chemical characters of rock forming slilicate mineral groups. Structural classification of silicates. Common minerals of igneous and metamorphic rocks. Minerals of the carbonate, phosphate, sulphide and halide groups.
(ii) Igneous ad Metamorphic Petrology
Generation and crystallisation of magma. Crystallisation of albite-anorthite, diopside-anorthite and diopside-wollastonite-silica systems. Reaction principle., Magmatic differentation and assimilation. Petrogenetic significance of the textures and structrues of igneous rocks. Petrography and petrogenesis of granite, syenite, diorite, basic and ultrabasic groups, charnockite, anorthosite and alkaline rocks. Carbonatites. Deccan volcanic province.
Types and agents of metamporphism. Metamporphic grdes and zones. Phase rule. Facies of regional and contact metamorphism. ACF and AKF diagrams. Textures and structures of metamporphic rocks. Metamorphism of arenaceous, argillaceous and basic rocks. Minerals assemblages Retrograde metamorphism. Metasomatism and granitisation, migmatites, Granulite terrains of India.
(iii) Sedimentology
Sedimentary rocks: Processes of formation. diagenesis and lithification. Properties of sediments. Clastic and non-clastic rocks-their classification, petrography and depositional environment. Sedimentary facies and provenance. Sedimentary structures and their significance. Heavy minerals and their significance. Sedminetary basins of India.
Section-B
(iv) Economic Geology
Ore, ore minerals and gangue, tenor of ore, classification of ore deposits. Process of formation of minerals deposits. Controls of ore localisation. Ore textures and structures. Metallogenic epochs and provinces. Geology of the important Indian deposits of aluminium, chromium, copper, gold, iron, lead zinc, manganese, titanium, uranium and thorium and industrial minerals. Deposits of coal and petroleum in India. National Mineral Policy. Conservation and utilization of mineral resources. Marine mineral resources and Law of Sea.
(v) Mining Geology
Methods of prospecting-geological, geophysical, geochemical and geobotanical. Techniques of sampling. Estimation of reserves or ore. Mehtods of exploration and mining metallic ores, industrial minerals and marine mineral resources. Mineral beneficiation and ore dressing.
(vi) Geochemistry and Environmental Geology
Cosmic abundance of elements. Composition of the planets and meteorites. Structure and compostion of earth and distribution of elements. Trace elements. Elements of crystal chemistry-types of chemical bonds, coordination number. Isolmorphism and polymorphism. Elementary thermodynamics.
Natural hazards-floods, landslides, coastal erosion, earthquakes and volcanic activity and mitigation. Environmental impact of urbanization, open cast mining, industrial and radioactive waste disposal, use of fertilizers, dumping of mine waste and fly-ash. Pollution of ground and surface water, marine pollution Environment protection-legislative measures in India.
Mathematics Syllabus
- Mathematics Paper-I
Section-A
Linear Algebra
Vector, space, linear dependance and independance, subspaces, bases, dimensions. Finite dimensional vector spaces.
Matrices, Cayley-Hamiliton theorem, eigenvalues and eigenvectors, matrix of linear transformation, row and column reduction, Echelon form, eqivalence, congruences and similarity, reduction to cannonical form, rank, orthogonal, symmetrical, skew symmetrical, unitary, hermitian, skew-hermitian forms–their eigenvalues. Orthogonal and unitary reduction of quadratic and hermitian forms, positive definite quardratic forms.
Calculus
Real numbers, limits, continuity, differerentiability, mean-value theorems, Taylor's theorem with remainders, indeterminate forms, maximas and minima, asyptotes. Functions of several variables: continuity, differentiability, partial derivatives, maxima and minima, Lagrange's method of multipliers, Jacobian. Riemann's definition of definite integrals, indefinite integrals, infinite and improper intergrals, beta and gamma functions. Double and triple integrals (evaluation techniques only). Areas, surface and volumes, centre of gravity.
Analytic Geometry :
Cartesian and polar coordinates in two and three dimesnions, second degree equations in two and three dimensions, reduction to cannonical forms, straight lines, shortest distance between two skew lines, plane, sphere, cone, cylinder., paraboloid, ellipsoid, hyperboloid of one and two sheets and their properties.
Section-B
Ordinary Differential Equations :
Formulation of differential equations, order and degree, equations of first order and first degree, integrating factor, equations of first order but not of first degree, Clariaut's equation, singular solution.
Higher order linear equations, with constant coefficients, complementary function and particular integral, general solution, Euler-Cauchy equation.
Second order linear equations with variable coefficients, determination of complete solution when one solution is known, method of variation of parameters.
Dynamics, Statics and Hydrostatics :
Degree of freedom and constraints, rectilinerar motion, simple harmonic motion, motion in a plane, projectiles, constrained motion, work and energy, conservation of energy, motion under impulsive forces, Kepler's laws, orbits under central forces, motion of varying mass, motion under resistance.
Equilibrium of a system of particles, work and potential energy, friction, common catenary, principle of virtual work, stability of equilibrium, equilibrium of forces in three dimensions. Pressure of heavy fluids, equilibrium of fluids under given system of forces Bernoulli's equation, centre of pressure, thrust on curved surfaces, equilibrium of floating bodies, stability of equilibrium, metacentre, pressure of gases.
Vector Analysis :
Scalar and vector fields, triple, products, differentiation of vector function of a scalar variable, Gradient, divergence and curl in cartesian, cylindrical and spherical coordinates and their physical interpretations. Higher order derivatives, vector identities and vector quations. Application to Geometry: Curves in space, curvature and torision. Serret-Frenet's formulae, Gauss and Stokes' theorems, Green's identities.
Section-A
Algebra:
Groups, subgroups, normal subgroups, homomorphism of groups quotient groups basic isomorophism theorems, Sylow's group, permutation groups, Cayley theorem. Rings and ideals, principal ideal domains, unique factorization domains and Euclidean domains. Field extensions, finite fields.
Real Analysis :
Real number system, ordered sets, bounds, ordered field, real number system as an ordered field with least upper bound property, cauchy sequence, completeness, Continuity and uniform continuity of functions, properties of continuous functions on compact sets. Riemann integral, improper integrals, absolute and conditional convergence of series of real and complex terms, rearrangement of series. Uniform convergence, continuity, differentiability and integrability for sequences and series of functions. Differentiation of fuctions of several variables, change in the order of partial derivatives, implict function theorem, maxima and minima. Multiple integrals. Complex Analysis : Analytic function, Cauchy-Riemann equations, Cauchy's theorem, Cauchy's integral formula, power series, Taylor's series, Laurent's Series, Singularities, Cauchy's residue theorem, contour integration. Conformal mapping, bilinear transformations.
Linear Programming :
Linear programming problems, basic solution, basic feasible solution and optimal solution, graphical method and Simplex method of solutions. Duality.
Transportation and assignment problems. Travelling salesman problmes.
Section-B
Partial differential equations:
Curves and surfaces in three dimesnions, formulation of partial differential equations, solutions of equations of type dx/p=dy/q=dz/r; orthogonal trajectories, pfaffian differential equations; partial differential equations of the first order, solution by Cauchy's method of characteristics; Charpit's method of solutions, linear partial differential equations of the second order with constant coefficients, equations of vibrating string, heat equation, laplace equation.
Numerical Analysis and Computer programming:
Numerical methods: Solution of algebraic and transcendental equations of one variable by bisection, Regula-Falsi and Newton-Raphson methods, solution of system of linear equations by Gaussian elimination and Gauss-Jordan (direct) methods, Gauss-Seidel(iterative) method. Newton's (Forward and backward) and Lagrange's method of interpolation.
Numerical integration: Simpson's one-third rule, tranpezodial rule, Gaussian quardrature formula. Numerical solution of ordinary differential equations: Euler and Runge Kutta-methods.
Computer Programming: Storage of numbers in Computers, bits, bytes and words, binary system. arithmetic and logical operations on numbers. Bitwise operations. AND, OR , XOR, NOT, and shift/rotate operators. Octal and Hexadecimal Systems. Conversion to and form decimal Systems. Representation of unsigned integers, signed integers and reals, double precision reals and long integrers.
Algorithms and flow charts for solving numerical analysis problems.
Developing simple programs in Basic for problems involving techniques covered in the numerical analysis.
Mechanics and Fluid Dynamics :
Generalised coordinates, constraints, holonomic and non-holonomic , systems. D' Alembert's principle and Lagrange' equations, Hamilton equations, moment of intertia, motion of rigid bodies in two dimensions.
Equation of continuity, Euler's equation of motion for inviscid flow, stream-lines, path of a particle, potential flow, two-dimensional and axisymetric motion, sources and sinks, vortex motion, flow past a cylinder and a sphere, method of images. Navier-Stokes equation for a viscous fluid.
Mechanical Engineering
-
Paper I
1. Theory of Machines
Kinematic and dynamic analysis of planar mechanisms. Cams, Gears and gear trains, Flywheels, Governors, Balancing of rigid rotors, Balancing of single and multicylinder engines, Linear vibration analysis of mechnical systems (single degree and two degrees of freedom), Critical speeds and whirling of shafts, Automatic Controls, Belts and chain drives. Hydrodynamic bearings.
2. Mechanics of Solids :
Stress and strain in two dimensions. Principal stresses and strains, Mohr’s construction, linear elastic materials, isotropy and an isotropy, Stress-strain relations, unlaxial loading, thermal stresses. Beams : Banding moment and shear force diagrams, bending stresses and deflection of beams, Shear stress distribution. Torsion of shafts, helical springs. Combined stresses, Thick and thin walled pressure vessels. Struls and columns, Strain energy concepts and theories of failure. Rotation discs. Shrink fits.
3. Enginerring Materials :
Basic concepts on structure of solids, Crystalline materials, Defects in crystalline materials, Alloys and binary phase diagrams, structure and properties of common engineering materials. Heat treatment of steels. Plastics, Ceramics and composite Materials, common applications of various materials.
4. Manufacturing Science :
Marchant’s force analysis, Taylor’s tool life equation, machinability and machining economics, Rigid, small and flexible automation, NC, CNC. Recent machining methods- EDM, ECM and ultrasonics. Application of lasers and plasmas, analysis of forming processes. High energy rate forming. Jigs, fixtures, tools and gauges, Inspection of length, position, profile and surface finish.
5. Manufacturing management :
Production Planning and Control, Forecasting-Moving average, exponential smoothing, Operations sheduling; assembly line balancing. Product development. Breakeven analysis, Capacity planning. PERT and CPM.
Control Operations : Inventory control-ABC analysis. EOQ model. Materials requirement planning. Job design, Job standards, work measurement, Quality management-Quality control. Operations Research : Linear programming-Graphical and Simplex methods. Transportation and assignment models. Single server queuing model.
Value Engineering : Value analysis, for cost/value. Total quality management and forecasting techniques. Project management.
6. ELEMENTS OF COMPUTATION :
Computer Organisation, Flow charting. Features of Common Computer Languages-FORTRAN d Base III, Lotus 1-2-3 C and elementary programming.
1. THERMODYNAMICS :
Basic concept. Open and closed systems, Applications of Thermodynamic Laws, Gas equations, Clapeyron equation, Availability, Irreversibility and Tds relations.
2. I.C. Engines, Fuels and Combustion :
Spark lgnition and compression ignition engines, Four stroke engine and Two stroke engines, mechanical, thermal and volumetric efficiency, Heat balance.
Combustion process in S.I. and C.I. engines, preignition detonation in S.I. engine Diesel knock in C.I. engine. Choice of engine fuels, Octance and Cetane retings. Alternate fuels Carburration and Fuel injection, Engine emissions and control. Solid, liquid and gaseous fuels, stoichometric air requirements and excess air factor, fuel gas analysis, higher and lower calorific values and their measurements.
3. HEAT TRANSFER, REFRIGERATION AND AIR CONDITIONING :
One and two dimensional heat conduction. Heat transfer from extended surfaces, heat transfer by forced and free convection. Heat exchangers. Fundamentals for diffusive and connective mass transfer, Radiation laws, heat exchange between black and non balck surfaces, Network Analysis. Heat pump refrigeration cycles and systems, Condensers, evaporators and expansion devices and controls. Properties and choice of refrigerant, Refrigeration Systems and components, psychometrics, comfort indices, cooling loading calculations, solar refrigeration.
4. TURBO-MACHINES AND POWER PLANTS :
Continuity, momentum and Energy Equations. Adiabatic and Isentropic flow, fanno lines, Raylegh lines. Theory and design of axial flow turbines and compressors, Flow through turbo-machine balde, cascades, centrifugal compressor. Dimensional analysis and modelling. Selection of site for steam, hydro, nuclear and stand-by power plants, selection base and peak load power plants Modern High pressure, High duty boilers, Draft and dust removal equipment, Fuel and cooling water systems, heat balance, station and palnt heat rates, operation and maintenance of various power plants, preventive maintenance, economics of power generation.
Physics
-
Physics Paper I
Section-A
1. Classical Mechanics
(a) Particle dynamics
Centre of mass and laboratory coordinates, conservation of linear and angular momentum. The rocket equation. Rutherford scattering, Galilean transformation, intertial and non-inertial frames, rotating frames, centrifugal and Coriolis forces, Foucault pendulum.
(b) System of particles
Constraints, degrees of freedom, generalised coordinates and momenta. Lagrange's equation and applications to linear harmonic oscillator, simple pendulum and central force problems. Cyclic coordinates, Hamilitonian Lagrange's equation from Hamilton's principle.
(c) Rigid body dynamics
Eulerian angles, inertia tensor, principal moments of inertia. Euler's equation of motion of a rigid body, force-free motion of a rigid body. Gyroscope.
2. Special Relativity, Waves & Geometrical Optics
(a) Special Relativity
Michelson-Morley experiment and its implications. Lorentz transformations-length contraction, time dilation, addition of velocities, aberration and Doppler effect, mass-energy relation, simple applications to a decay process. Minkowski diagram, four dimensional momentum vector. Covariance of equations of physics.
(b) Waves
Simple harmonic motion, damped oscillation, forced oscillation and resonance. Beats. Stationary waves in a string. Pulses and wave packets. Phase and group velocities. Reflection and Refraction from Huygens' principle.
(c) Geometrical Optics
Laws of relfection and refraction from Fermat's principle. Matrix method in paraxial optic-thin lens formula, nodal planes, system of two thin lenses, chromatic and spherical aberrations.
3. Physical Optics
(a) Interference
Interference of light-Young's experiment, Newton's rings, interference by thin films, Michelson interferometer. Multiple beam interference and Fabry-Perot interferometer. Holography and simple applications.
(b) Diffraction
Fraunhofer diffraction-single slit, double slit, diffraction grating, resolving power. Fresnel diffraction: - half-period zones and zones plates. Fresnel integrals. Application of Cornu's spiral to the analysis of diffraction at a straight edge and by a long narrow slit. Diffraction by a circular aperture and the Airy pattern.
(c) Polarisation and Modern Optics
Production and detection of linearly and circularly polarised light. Double refraction, quarter wave plate. Optical activity. Principles of fibre optics attenuation; pulse dispersion in step index and parabolic index fibres; material dispersion, single mode fibres. Lasers-Einstein A and B coefficients. Ruby and He-Ne lasers. Characteristics of laser light-spatial and temporal coherence. Focussing of laser beams. Three-level scheme for laser operation.
Section-B
4. Electricity and Magnetism
(a) Electrostatics and Magnetostatics
Laplace ad Poisson equations in electrostatics and their applications. Energy of a system of charges, multipole expansion of scalar potential. Method of images and its applications. Potential and field due to a dipole, force and torque on a dipole in an external field. Dielectrics, polarisation. Solutions to bounary-value problems-conducting and dielectric spheres in a uniform electric field. Magentic shell, uniformly magnetised sphere. Ferromagnetic materials, hysteresis, energy loss.
(b) Current Electricity
Kirchhoff's laws and their applications. Biot-Savart law, Ampere's law, Faraday's law, Lenz' law. Self-and mutual-inductances. Mean and rms values in AC circuits. LR CR and LCR circuits- series and parallel resonance. Quality factor. Principal of transformer.
5. Electromagnetic Theory & Black Body Radiation
(a) Electromagnetic Theory
Displacement current and Maxwell's equatons. Wave equations in vacuum, Poynting theorem. Vector and scalar potentials. Gauge invariance, Lorentz and Coulomb gauges. Electromagnetic field tensor, covariance of Maxwell's equations. Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two dielectrics. Fresnel's relations. Normal and anomalous dispersion. Rayleigh scattering.
(b) Blackbody radiation
Balckbody radiation ad Planck radiation law- Stefan-Boltzmann law, Wien displacement law and Rayleigh-Jeans law. Planck mass, Planck length, Planck time,. Planck temperature and Planck energy.
6. Thermal and Statistical Physics
(a) Thremodynamics
Laws of thermodynamics, reversible and irreversible processes, entropy. Isothermal, adiabatic, isobaric, isochoric processes and entropy change. Otto and Diesel engines, Gibbs' phase rule and chemical potential. van der Waals equation of state of a real gas, critical constants. Maxwell-Boltzman distribution of molecular velocities, transport phenomena, equipartition and virial theorems. Dulong-Petit, Einstein, and Debye's theories of specific heat of solids. Maxwell lllrelations and applications. Clausius- Clapeyron equation. Adiabatic demagnetisation, Joule-Kelvin effect and liquefaction of gases.
(b) Statistical Physics
Saha ionization formula. Bose-Einstein condenssation. Thermodynamic behaviour of an ideal Fermi gas, Chandrasekhar limit, elementary ideas about neutron stars and pulsars. Brownian motion as a random walk, diffusion process. Concept of negative temperatures.
Paper-II
Section-A
1. Quantum Mechanics I
Wave-particle dualitiy. Schroedinger equation and expectation values. Uncertainty principle. Solutions of the one-dimensional Schroedinger equation free particle (Gaussian wave-packet), particle in a box, particle in a finite well, linear harmonic oscillator. Reflection and transmission by a potential step and by a rectangular barrier. Use of WKB formula for the life-time calcuation in the alpha-decay problem.
2. Quantum Mechanics II & Atomic Physics
(a) Quantum Mechanics II
Particle in a three dimensional box, density of states, free electron theory of metals. The angular meomentum problem. The hydrogen atom. The spin half problem and properties of Pauli spin matrices.
(b) Atomic Physics
Stern-Gerlack experiment, electron spin, fine structure of hydrogen atom. L-S coupling, J-J coupling. Spectroscopic notation of atomic states. Zeeman effect. Frank-Condon principle and applications.
3. Molecular Physics
Elementary theory of rotational, vibratonal and electronic spectra of diatomic molecules. Raman effect and molecular structure. Laser Raman spectroscopy Importance of neutral hydrogen atom, molecular hydrogen and molecular hydrogen ion in astronomy Fluorescence and Phosphorescence. Elementary theory and applications of NMR. Elementary ideas about Lamb shift and its significance.
Section-B
4. Nuclear Physics
Basic nuclear properties-size, binding energy, angular momentum, parity, magnetic moment. Semi-empirical mass formula and applications. Mass parabolas. Ground state of a deuteron magnetic moment and non-central forces. Meson theory of nuclear forces. Salient features of nuclear forces. Shell model of the nucleus-success and limitations. Violation of parity in beta decay. Gamma decay and internal conversion. Elementary ideas about Mossbauer spectroscopy. Q-value of nuclear reactions. Nuclear fission and fusion, energy production in stars. Nuclear reactors.
5. Particle Physics & Solid State Physics
(a) Particle Physics
Classification of elementary particles and their interactions. Conservation laws. Quark structure of hadrons. Field quanta of electroweak and strong interactions. Elementary ideas about Unification of Forces. Physics of neutrinos.
(b) Solid State Physics
Cubic crystal structure. Band theory of solids- conductors, insulators and semiconductors. Elements of superconductivity, Meissner effect, Josephson junctions and applications. Elementary ideas about high temperature superconductivity.
6. Electronics
Intrinsic and extrinsic semiconductors-p-n-p and n-p-n transistors.Amplifiers and oscillators. Op-amps. FET, JFET and MOSFET. Digital electronics-Boolean identities, De; Morgan's laws, Logic gates and truth tables., Simple logic circuits. Thermistors, solar cells. Fundamentals of microprocessors and digital computers.
Statistics
-
Statistics Paper-I
Probability :
Sample space and events, probability measure and probability space, random variable as a measurable function, distribution function of a random variable, discrete and continuous-type random variable probability mass function, probability density function, vector-valued random variable, marginal and conditional distributions, stochastic independence of events and of random variables, expectation and moments of a random variable, conditional expectation, convergence of a sequence of random variable in distribution, in probability, in p-th mean and almost everywhere, their criteria and inter-relations, Borel-Cantelli lemma, Chebyshev’s and Khinchine‘s weak laws of large numbers, strong law of large numbers and kolmogorov’s theorems, Glivenko-Cantelli theorem, probability generating function, characteristic function, inversion theorem, Laplace transform, related uniqueness and continuity theorems, determination of distribution by its moments. Linderberg and Levy forms of central limit theorem, standard discrete and continuous probability distributions, their inter-relations and limiting cases, simple properties of finite Markov chains.
Statistical Inference
Consistency, unbiasedness, efficiency, sufficiency, minimal sufficiency, completeness, ancillary statistic, factorization theorem, exponential family of distribution and its properties, uniformly minimum variance unbiased (UMVU) estimation, Rao-Blackwell and Lehmann-Scheffe theorems, Cramer-Rao inequality for single and several-parameter family of distributions, minimum variance bound estimator and its properties, modifications and extensions of Cramer-Rao inequality, Chapman-Robbins inequality, Bhattacharyya’s bounds, estimation by methods of moments, maximum likelihood, least squares, minimum chi-square and modified minimum chi-square, properties of maximum likelihood and other estimators, idea of asymptotic efficiency, idea of prior and posterior distributions, Bayes estimators.
Non-randomised and randomised tests, critical function, MP tests, Neyman-Pearson lemma, UMP tests, monotone likelihood ratio, generalised Neyman-Pearson lemma, similar and unbiased tests, UMPU tests for single and several-parameter families of distributions, likelihood rotates and its large sample properties, chi-square goodness of fit test and its asymptotic distribution. Confidence bounds and its relation with tests, uniformly most accurate (UMA) and UMA unbiased confidence bounds.
Kolmogorov’s test for goodness of fit and its consistency, sign test and its optimality. wilcoxon signed-ranks test and its consistency, Kolmogorov-Smirnov two-sample test, run test, Wilcoxon-Mann-Whiltney test and median test, their consistency and asymptotic normality. Wald’s SPRT and its properties, OC and ASN functions, Wald’s fundamental identity, sequential estimation.
Linear Inference and Multivariate Analysis
Linear statistical modesl, theory of least squares and analysis of variance, Gauss-Markoff theory, normal equations, least squares estimates and their precision, test of signficance and interval estimates based on least squares theory in one-way, two-way and three-way classified data, regression analysis, linear regression, curvilinear regression and orthogonal polynomials, multiple regression, multiple and partial correlations, regression diagnostics and sensitivity analysis, calibration problems, estimation of variance and covariance components, MINQUE theory, multivariate normal distributin, Mahalanobis;’ D2 and Hotelling’s T2 statistics and their applications and properties, discriminant analysis, canonical correlations, one-way MANOVA, principal component analysis, elements of factor analysis.
Sampling Theory and Design of Experiments
An outline of fixed-population and super-population approaches, distinctive features of finite population sampling, probability sampling designs, simple random sampling with and without replacement, stratified random sampling, systematic sampling and its efficacy for structural populations, cluster sampling, two-stage and multi-stage sampling, ratio and regression, methods of estimation involving one or more auxiliary variables, two-phase sampling, probability proportional to size sampling with and without replacement, the Hansen-Hurwitz and the Horvitz-Thompson estimators, non-negative variance estimation with reference to the Horvitz-Thompson estimator, non-sampling errors, Warner’s randomised response technique for sensitive characteristics.
Fixed effects model (two-way classification) random and mixed effects models (two-way classification per cell), CRD, RBD, LSD and their analyses, incomplete block designs, concepts of orthogonality and balance, BIBD, missing plot technique, factorial designs : 2n, 32 and 33, confounding in factorial experiments, split-plot and simple lattice designs.
Paper-II
I. Industrial Statistics
Process and product control, general theory of control charts, different types of control charts for variables and attributes, X, R, s, p, np and c charts, cumulative sum chart, V-mask, single, double, multiple and sequential sampling plans for attributes, OC, ASN, AOQ and ATI curves, concepts of producer’s and consumer’s risks, AQL, LTPD and AOQL, sampling plans for variables, use of Dodge-Romig and Military Standard tables.
Concepts of reliability, maintainability and availability, reliability of series and parallel systems and other simple configurations, renewal density and renewal function, survival models (exponential), Weibull, lognormal, Rayleigh, and bath-tub), different types of redundancy and use of redundancy in reliability improvement, problems in life-testing, censored and truncated experiments for exponential models.
II. Optimization Techniques
Different, types of models in Operational Research, their construction and general methods of solution, simulation and Monte-Carlo methods, the structure and formulation of linear programming (LP) problem, simple LP model and its graphical solution, the simplex procedure, the two-phase method and the M-technique with artificial variables, the duality theory of LP and its economic interpretation, sensitivity analysis, transportation and assignment problems, rectangular games, two-person zero-sum games, methods of solution (graphical and algerbraic).
Replacement of failing or deteriorating items, group and individual replacement policies, concept of scientific inventory management and analytical structure of inventory problems, simple models with deterministic and stochastic demand with and without lead time, storage models with particular reference to dam type.
Homogeneous discrete-time Markov chains, transition probability matrix, classification of states and ergodic theorems, homogeneous continous-time Markov chains, Poisson process, elements of queueing theory, M/M/1, M/M/K, G/M/1 and M/G/1 queues.
Solution of statistical problems on computers using well known statistical software packages like SPSS.
III. Quantitative Economics and Official Statistics
Determination of trend, seasonal and cyclical components, Box-Jenkins method, tests for stationery of series, ARIMA models and determination of orders of autoregressive and moving average components, forecasting.
Commonly used index numbers-Laspeyre's, Paashe's and Fisher's ideal index numbers, chain-base index number uses and limitations of index numbers, index number of wholesale prices, consumer price index number, index numbers of agricultural and industrial production, tests, for mdex numbers lve proportonality test, time-reversal test, factor-reversal test, circular test and dimensional invariance test.
General linear model, ordinary least squares and generalised least squires methods of estimation, problem of multicollineaity, consequences and solutions of multicollinearity, autocorrelation and its consequeces, heteroscedasticity of disturbances and its testing, test for independe of disturbances, Zellner's seemingly unrelated regression equation model and its estimation, concept of structure and model for simulaneous equations, problem of identification-rank and order conditions of identifiability, two-stage least squares method of estimation.
Present official statistical system in India relating to population, agriculture, industrial production, trade and prices, methods of collection of official statistics, their reliability and limitation and the principal publications containing such statistics, various official agencies responsible for data collection and their main functions.
IV. Demography and Psychometry
Demographic data from census, registration, NSS and other surveys, and their limitation and uses, definition, construction and uses of vital rates and ratios, measures of fertility, reproduction rates, morbidity rate, standardized death rate, complete and abridged life tables, construction of life tables from vital statistics and census returns, uses of life tables, logistic and other population growth curves, fitting a logistic curve, population projection, stable population theory, uses of stable population and quasi-stable population techniques in estimation of demographic parameters, morbidity and its measurement, standard classification by cause of death, health surveys and use of hospital statistics.
Methods of standardisation of scales and tests, Z-scores, standard scores, T-scores, percentile scores, intelligence quotient and its measurement and uses, validity of test scores and its determination, use of factor analysis and path analysis in psychometry.
Zoology Syllabus
-
Zoology Paper-1
Section-A
1. Non-chordata and chordata :
(a) Classfication and relationship of varous phyla upto sub-classes; Acoelomata and Coelomata; Protostomes and Deuterostomes, Bilateralia and Radiata; Status of Protista, Parazoa, Onychophora and Hemichordata; Symmetry.
(b) Protozoa : Locomotion, nutrition, reproduction; evolution of sex; General features and life history of Paramaecium, Monocystis, Plasmodium, and Leishmania. (c) Porifera : Skeleton, canal system and reproduction.
(d) Coelenterata : Polymorphism, defensive structures and their mechanism; coral reefs and their formation; metagenesis; general features and life history of Obelia and Aurelia.
(e) Platyhelminthes : Parasitic adaptation; general features and life history of Fasciola and Taenia and their relation to man.
(f) Nemathelminthes : General features, life history and parasitic adaptation of Ascaris; nemathelminths in relation to man.
(g) Annelida : Coelom and metamerism; modes of life in polychaetes; general features and life history of nereis (Neanthes), earthworm (Pheretima) and leach (Hirudinaria).
(h) Arthropoda : Larval forms and parasitism in Crustacea; vision and respiration in arthropods (prawn, cockroach and scorpion); modification of mouth parts in insects (cockroach, mosquito, housefly, honey bee and butterfly); metamorphosis in insects and its hormonal regulation; social organization in insects (termites and honey bees).
(i) Mollusca : Feeding, respiration, locomotion, shell diversiy; general features and life history of Lamellidens, Pila and Sepia, torsion and detorsion in gastropods.
(j) Echinodermata : Feeding, respiration, locomotion larval forms; general features and life history of Asterias.
(k) Protochordata : Origin of chordates; general features and life history of Branchiostoma and Herdamania.
(l) Pisces : Scales, respiration, locomotion, migration.
(m) Amphibia : Origin of tetrapods; parental care, paedomorphosis.
(n) Reptilia : Origin of reptiles; skull types; status of Sphenodon and crocidiles.
(o) Aves : Origin of birds; flight adaptation, migration.
(p) Mammalia : Origin of mammals; denitition; general features of egg-laying mammals, pouched-mammals, aquatic mammals and primates; endocrine glands and other hormone producing structures (pituitary, thyroid, parathyroid, adrenal, pancreas, gonads) and their interrelationships.
(q) Comparative functional anatomy of various systems of vertebrates (integument and its derivatives, endoskeleton, locomotory organs, digestive system, respiratory system, circulatory system including heart and aortic arches; urino-genital system, brain and sense organs (eye and ear).
Section- B
1. Ecology :
(a) Biosphere: Biogeochemical cycles, green-houses effect, ozone layer and its impact; ecological succession, biomes and ecotones.
(b) Population, characteristics, population dynamics, population stabilization.
(c) Conservation of natural resources- mineral mining, fisheries, aquaculture; forestry; grassland; wildlife (Project Tiger); susainable production in agriculture-integrated pest management.
(d) Environmental biodegradation; pollution and its impact on biosphere and its prevention.
II. Ethology :
(a) Behaviour : Sensory filtering, responsiveness, sign stimuli, learning, instinct, habituation, conditioning, imprinting.
(b) Role of hormones in drive; role of pheromones in alarm spreading; crypsis, predator detection, predator tactics, social behaviour in insects and primates; courtship (Drosophila, 3-spine stickleback and birds).
(c) Orientation, navigation, homing; biological rhythms; biological clock, tidal, seasonal and circadian rhythms.
(d) Methods of studying animal behaviour.
III. Economic Zoology :
(a) Apiculture, sericulture, lac culture, carp culture, pearl culture, prawn culture.
(b) Major infectious and communicable diseases (small pox, plague, malaria, tuberculosis, cholera and AIDS) their vectors, pathogens and prevention.
(c) Cattle and livestock diseases, their pathogens (helminths) and vectors (ticks, mites,Tabanus, Stomoxys)
(d) Pests of sugar cane (Pyrilla perpusiella), oil seed (Achaea janata) and rice (Sitophilus oryzae).
IV. Biostatistics :
Designing of experiments; null hypothesis; correlation, regression, distribution and measure of central tendency, chi square, student t-test, F-test (one-way & two-way F-test).
V. Instrumental methods :
(a) Spectrophotometry, flame photometry, Geiger-Muller counter, scintiliation counting.
(b) Electron microscopy (TEM, SEM).
Paper-II
Section-A
I. Cell Biology:
(a) Structure and function of cell andits organelles(nucleus, plasma membrane, mitochondria, Golgi bodies, endoplasmic reticulum, ribosomes and Iysosomes), cell division (mitosis and meiosis), mitotic spindle and mitotic apparatus, chromosome movement.
(b) Watson-Crick model of DNA, replication of DNA, protein synthesis, transcription and transcription factors.
II. Genetics
a) Gene structure and functions; genetic code.
(b) Sex chromosomes and sex determination in Drosophilla, nematodes and man.
(c) Mendel's laws of inheritance, recombination, linkage, linkage-maps, multiple alleles, cistron concept; genetics of blood groups.
(d) Mutations and mutagenesis : radiation and chemical.
(e) Cloning technology, plasmids and cosmids as vectors, transgenics, transposons, DNA sequence cloning and whole animal cloning (Principles and methodology).
(f) Regulation and gene expression in pro-and eu-karyotes.
(g) Signal transduction; pedigree-analysis; congenital diseases in man.
(h) Human genome mapping; DNA finger-printing.
III. Evolution
(a) Origin of life
(b) Natural selection, role of mutation in evolution, mimicry, variation, isolation, speciation.
(c) Fossils and fossilization; evolution of horse, elephant and man.
(d) Hardy-Weinberg Law, causes of change in gene frequency.
(e) Continental drift and distribution of animals.
IV. Systematics
(a) Zoological nomenclature; international code; cladistics.
Section-B
I. Biochemistry
(a) Structure and role of carbohydrates, fats, lipids, proteins, aminoacids, nucleic acids; saturated and unsaturated fattyacids, cholesterol.
(b) Glycolysis and Krebs cycle, oxidation and reduction, oxidative phosphorylation; energy conservation and release, ATP, cyclic AMP-its structure and role.
(c) Hormone classification (steroid and peptide hormones), biosynthesis and function.
(d) Enzymes : types and mechanisms of action; immunoglobulin and immunity; vitamins and co-enzymes.
(e) Bioenergetics.
II Physiology (with special refernece ot mammals)
(a) Composition and constitutents of blood; blood groups and Rh factor in man; coagulation, factors and mechanism of coagulation; acid-base balance, thermo regulation.
(b) Oxygen and carbon dioxide transport; haemoglobin : constitutents and role in regulation.
(c) Nutritive requirements; role of salivary glands, liver, pancreas and intestinal glands in digestion and absorption.
(d) Excretory products; nephron and regulation of urine formation; osmoregulation.
(e) Types of muscles, mechanism of contraction of skeletal muscles.
(f) Neuron, nerve impulse-its conduction and synaptic transmission; neurotransmitters. (g) Vision, hearing and olfaction in man.
(h) Mechanism of hormone action.
(i) Physiology of reproduction, role of hormones and phermones.
III. Developmental Biology
(a) Differentiation from gamete to neurula stage; dedifferentiation; metaplasia, induction, morphogenesis and morphogen; fate maps of gastrulae in frog and chick; organogenesis of eye and heart, placenation in mammals.
(b) Role of cytoplasm in and genetic control of development; cell lineage; causation of metamorphosis in frog and insects; paedogenesia and neoteny; growth, degrowth and cell death; ageing; blastogenesis; regeneration; teratogenesis; neoplasia.
(c) Invasiveness of placenta; in vitro fertilization; embryo transfer, cloning.
(d) Baer's law; evo-devo concept.
No comments:
Post a Comment